Ensemble learning combines results from multiple machine learning models in order to provide a better and optimised predictive model with reduced bias, variance and improved predictions. However, in federated learning it is not feasible to apply centralised ensemble learning directly due to privacy concerns. Hence, a mechanism is required to combine results of local models to produce a global model. Most distributed consensus algorithms, such as Byzantine fault tolerance (BFT), do not normally perform well in such applications. This is because, in such methods predictions of some of the peers are disregarded, so a majority of peers can win without even considering other peers' decisions. Additionally, the confidence score of the result of each peer is not normally taken into account, although it is an important feature to consider for ensemble learning. Moreover, the problem of a tie event is often left un-addressed by methods such as BFT. To fill these research gaps, we propose PoSw (Proof of Swarm), a novel distributed consensus algorithm for ensemble learning in a federated setting, which was inspired by particle swarm based algorithms for solving optimisation problems. The proposed algorithm is theoretically proved to always converge in a relatively small number of steps and has mechanisms to resolve tie events while trying to achieve sub-optimum solutions. We experimentally validated the performance of the proposed algorithm using ECG classification as an example application in healthcare, showing that the ensemble learning model outperformed all local models and even the FL-based global model. To the best of our knowledge, the proposed algorithm is the first attempt to make consensus over the output results of distributed models trained using federated learning.
translated by 谷歌翻译
人类活动识别(HAR)是一项机器学习任务,在包括医疗保健在内的许多领域中进行了应用,但事实证明这是一个具有挑战性的研究问题。在医疗保健中,它主要用作老年护理的辅助技术,通常与其他相关技术(例如物联网)一起使用,因为可以在智能手机,可穿戴设备,环境环境等物联网设备的帮助下实现HAR和体内传感器。在集中式和联合环境中,已将卷积神经网络(CNN)和经常性神经网络(RNN)等深神网络技术(CNN)和复发性神经网络(RNN)用于HAR。但是,这些技术有一定的局限性:RNN不能轻易平行,CNN具有序列长度的限制,并且两者在计算上都很昂贵。此外,在面对诸如医疗保健等敏感应用程序时,集中式方法存在隐私问题。在本文中,为了解决HAR面临的一些现有挑战,我们根据惯性传感器提出了一种新颖的单块变压器,可以将RNN和CNN的优势结合在一起而无需其主要限制。我们设计了一个测试床来收集实时人类活动数据,并使用数据来训练和测试拟议的基于变压器的HAR分类器。我们还建议转移:使用拟议的变压器解决隐私问题的基于联合学习的HAR分类器。实验结果表明,在联合和集中设置中,该提出的解决方案优于基于CNN和RNN的最先进的HAR分类器。此外,拟议的HAR分类器在计算上是便宜的,因为它使用的参数少于现有的CNN/RNN分类器。
translated by 谷歌翻译
深度学习在使用心电图(ECG)数据分类不同的心律失常方面发挥着重要作用。然而,培训深入学习模型通常需要大量数据,它可能导致隐私问题。不幸的是,无法从单个筒仓中容易地收集大量的医疗保健数据。此外,深度学习模型就像黑盒子,没有解释的预测结果,通常在临床医疗保健中需要。这限制了深度学习在现实世界卫生系统中的应用。在本文中,我们设计了一种基于ECG的医疗保健应用的联邦设置的新的可解释的人工智能(XAI)的深度学习框架。联合设置用于解决数据可用性和隐私问题等问题。此外,所提出的框架设置有效地根据卷积神经网络(CNN)使用AutoEncoder和分类器来分类心律失常。此外,我们提出了一个基于XAI的模块,在拟议的分类器的顶部上解释了分类结果,帮助临床从业者做出快速可靠的决策。拟议的框架是使用MIT-BIH心律失常数据库进行培训和测试。分类器可分别使用噪声和清洁数据进行高达94%和98%的精度,使用嘈杂和清洁数据,具有五倍的交叉验证。
translated by 谷歌翻译
寻找合适的工作和狩猎符合条件的候选人对求职和人力资源机构来说很重要。通过关于职位描述的广泛信息,员工和雇主需要帮助,以根据职位描述文本自动检测职位标题。在本文中,我们提出了用于预测作业描述文本的相关职位标题的多标签分类方法,并实现具有不同预先训练的语言模型的BI-GRU-LSTM-CNN来申请作业标题预测问题。具有多语言预先训练模型的伯特获得了开发和测试集的F1分数的最高结果,该组在开发集中为62.20%,测试集47.44%。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
本文说明了我们对第四个情感行为分析(ABAW)竞争的提交方法。该方法用于多任务学习挑战。我们不使用面部信息,而是使用所提供的包含面部和面部上下文的数据集中的完整信息。我们利用InceptionNet V3模型提取深度特征,然后应用了注意机制来完善特征。之后,我们将这些功能放入变压器块和多层感知器网络中,以获得最终的多种情感。我们的模型预测唤醒和价,对情绪表达进行分类,并同时估算动作单元。提出的系统在MTL挑战验证数据集上实现了0.917的性能。
translated by 谷歌翻译
网络修剪是一种广泛使用的压缩技术,能够以最小的准确性损失显着缩小过度参数化模型。本文表明,修剪可能会产生或加剧不同的影响。该论文阐明了导致这种差异的因素,表明梯度规范的差异以及跨组的决策边界的距离造成了这一关键问题。它详细分析了这些因素,提供了理论和经验支持,并提出了一种简单而有效的解决方案,可以减轻修剪造成的不同影响。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译